October 2022

The Bayesian estimation of rating curves: principles of the BaRatin method

Jérôme LE COZ INRAE, UR RiverLy, Lyon, France

The BaRatin method for rating curves

- ✓ Introduction
- ✓ Hydraulic principles behind the rating curve
- ✓ Rating curve estimation
- ✓ Going further

The BaRatin method for rating curves

✓ Introduction

- ✓ Hydraulic principles behind the rating curve
- ✓ Rating curve estimation
- ✓ Going further

Establishing probabilistic streamflow data

BaRatin (Bayesian rating curves)

Develop a practical calibration technique to:

- Combine data (measurements) and hydraulic knowledge
- Make expert knowledge and assumptions easier to defend and review
- Account for data and hydraulics uncertainties
- Provide discharge uncertainties

BaRatinAGE software

- Graphical interface (Java) and user manual
- Freely available in French, English and other languages
- Open-source (GPL3), codes available on GitHub
- ~200 registered users

Rating curve uncertainty methods

New methods have been developed in the past decade to tackle practical and theoretical issues of the existing ISO/WMO method (which no hydrological service use routinely).

BaRatin is among the 3 that are used operationally, and likely the most widely released.

Kiang et al. (2018) Comparison of 7 methods for rating curve uncertainty

The BaRatin method for rating curves

✓ Introduction

- ✓ Hydraulic principles behind the rating curve
- ✓ Rating curve estimation
- ✓ Going further

Hydraulic controls

 Physical properties of a channel which determine the relationship between stage and discharge at a location in the channel (World Meteorological Organization, 2012)

Fall (critical flow: chocked flow)

Upstream water level ~ horizontal « Emptying bucket »

Water level ~ parallel to riverbed

Section controls

Channel controls

Hydraulic controls

Depending on the water level, differing controls may appear or disappear. Several controls may add up.

Hydraulic analysis

The main controls are identified or assumed.

The succession of controls over rating curve segments is represented by a matrix.

Streamwise profile

Cross-section

100 m³/s

10 m³/s

1 m³/s

100 L/s

Rating curve equation

Each control can be modelled as: $Q = a(h-b)^{c}$

The BaRatin method for rating curves

✓ Introduction

- ✓ Hydraulic principles behind the rating curve
- ✓ Rating curve estimation
- ✓ Going further

• Wide, rectangular channel (fairly uniform flow)

• Rectangular weir / natural riffle

$$Q(H) = C_r \sqrt{2g} B_w (H-b)^{1.5}$$

$$a$$
ischarge coefficient ≈ 0.4
gravity ≈ 9.81 m/s²

$$Q(H) = C_t \sqrt{2g} \tan(v/2) (H - b)^{2.5}$$

$$a$$
Discharge coefficient ~ 0.31

Section controls

Channel controls

Unknown controls $Q = a(h-b)^c$

• Attention! The geometry of a channel control is an average of the section that extends downstream and upstream of the gauge

River Derwent, UK

Upper Truckee River, USA

Waimakariri, New Zealand

• Approximation of a compound channel using 2 recangular channels

• Approximation of a complex critical section (natural riffle) by two nested rectangular weirs

• Attention! The overflow width of the weir is counted perpendicular to the direction of flow

⁽²⁾ Bayesian inference

Example of a weir:

$$Q(h) = a(h - \boldsymbol{b})^c$$

The Altier River at La Goulette, France (EDF-DTG)

² Bayesian inference

Prior knowledge: $b = 0.2 \text{ m} \pm 0.4 \text{ m}$

And now what?...

Once we have the equation of the rating curve...

... we need to estimate parameters k_i , a_i , c_i (b_i are deduced by continuity)

The magics of Bayesian inference

The "posterior" distribution of the parameters of the rating curve can be computed using Bayes theorem:

Reverend Thomas Bayes (1702-1761)

The magics of Bayesian inference

The posterior distribution is sampled by the Markov Chains Monte Carlo method (MCMC, Metropolis algorithm).

Example of a weir:

 $Q(h) = a(h - \boldsymbol{b})^c$

Altier River at Goulette, France (EDF-DTG)

Prior knowledge:

 $b = 0.2 \text{ m} \pm 0.4 \text{ m}$

Prior knowledge: A posteriori :

MaxPost (0.35 m) $b = 0.2 \text{ m} \pm 0.4 \text{ m}$ $b = 0.35 \text{ m} \pm 0.06 \text{ m}$

Observations (gaugings):

Realization

The "spaghetti" approach

Posterior distribution is sampled using MCMC techniques

+ Structural/Remnant uncertainty: What is lacking to explain the scatter of the gaugings around the rating curve

Bayesian estimation of the rating curve

The information contents of the measurements and of the hydraulic knowledge are combined.

Possible interpretations:

- 1. The hydraulic estimation is refined using the measurements
- 2. The rating is adjusted to the measurements <u>under hydraulic</u> <u>constraints</u>

Example: the Ardèche at Sauze

Practically: Check MCMC realizations (traces)

Good! ('stationary' random walk)

Not so good... (clear trends)

Check there is no conflit between prior and posterior

Check there is no conflit between prior and posterior

Check there is no conflit between prior and posterior

Good!

Check there is no conflit between prior and posterior

Check there is no conflit between prior and posterior

If there appears to be a conflict:

- Check that the calculations went well (convergence of MCMC iterations)
- Check the values of the priors (<u>do not set them using the results or</u> <u>the gaugings used in the estimation!</u>)
- Review your assumptions on hydraulic controls, test other hydraulic configurations
- ✓ Check the gaugings and their uncertainties

Establishing probabilistic streamflow data

Uncertainty budgets

Uncertainty budgets help to rank sources of error and improve the measurement process

- Reflects the measurement uncertainties of the stage records
- Reflects the (limited) information contents of the priors and observations (the gaugings)
- Combines parametric and structural uncertainties
- Structural uncertainty reflects the limitations of the rating curve model for describing the real hydraulic conditions of the site (complex controls, shifts, hysteresis, variable backwater...)

Uncertainty budgets

Uncertainty budgets help to rank sources of error and improve the measurement process

Intermediate flows

sources of error and improve the measurement process

High flows

The BaRatin method for rating curves

✓ Introduction

- ✓ Hydraulic principles behind the rating curve
- ✓ Rating curve estimation
- ✓ Going further: more on BaRatin

Extension of BaRatin: BaM!

Calculation code for estimating <u>any model</u> and using it for prediction

Schematisation of BaM! (Renard, 2017)

Rating shifts due to bed evolution

BaRatin-SPD (stage-period-discharge): rating changes due to bed evolution at known times

PhD of Valentin Mansanarez (2016)

 $Q(h, i_{\text{period}})$

Mansanarez et al. (2019)

Complex rating curves

BaRatin-SGD (stage-gradient-discharge): hysteresis due to transient flow

PhD of Valentin Mansanarez (2016)

Complex rating curves

BaRatin-SFD (stage-fall-discharge): variable backwater

Rating curves affected by aquatic vegetation

Modified channel control equation with vegetation roughness added

$$Q(h,t) = \frac{1}{\sqrt{n_b^2 + n_v^2}} B \sqrt{S_0} (h(t) - b)^c$$

Perret et al. (2021)

Shields Jr. (2017)